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Abstract This paper compares the asymptotic elficiency of a number of two step estimators developed
for estimaling a static linear regression model with serially correlated errors when observations are
missing. A Monte Carlo simulation is used to illustrate the results in small samples.

L INTRODUCTION

The presence of serially correlated errors in a
linear regression model causes the ordinary
least squares (OLS) estimator of the regression
cocfficients to be inefficient and the OLS
formula standard errors to bhe inconsistent
estimates of the true standard errors. To
remedy the inefficiency problem, many
estimators have been suggested including the
maximum likelihood estimator and  various
two step estimators {Cochrane and  Orcutt
(1949) and Prais and Wingten (1954)) A
consistent estimate of the true standard errors
of the OLS estimator could be computed using
the Newey-West {1987) approach.

Less attention has been devoted 1o this
problem where for some reason observations
on some of the explanatory and dependent
varizbles are missing. OLS could be applied to
those observations for which data on all the
explanatory variabies and the dependent
variable are available, and a consistent
estimate of the true standard errors of the OLS
estimator could be again be compuled using
the Newey-West (1987} approach. Maximum
likelihood (ML) estimales could be obtained
by using the Kalman filter algorithm 1lo
calculate the log-likelihood function (Harvey
anc Phillips (1979) and Jones (1980)). This
algorithm is uwsed in SAS to allow ML
estimation of a static linear regression model
with errors that are generated by a pth order
autoregression and can handie a wide variety
of missing observations (SAS Institute (1984,
ch. 9%). SHAZAM will calculate ML cstimates
for the linear regression model with an
autoregression of order one but there can only
be one block of missing observations (White
and Horsman (1985)).

These ML methods are notl available in other
computer packages and are computationaily
expensive. Wansbeck and Kapteyn (WK)
(1983} developed a number of simple and
casily computable  estimators  for  the
parameters of a static linear regression model
with first order serially correlated errors when

some  observations are  missing,  Their
estimators only require estimation by ordinary
least  squares. Using a  Monte Carlo
simatation, WI found that, iz small samples,
of the eight estimators they considered the
maximam likelihood estimalor was “the most
complicaled but also the most efficient one”
(p. 486). However, they did not explicitly
derive the asymptotic properties of most of
their estimators.

The purpose of the paper is to demonstraie
that for the regression parameters, apart from
the maximum likelihood estimator, two of the
estimators considered by WK are always
asymptotically efficient while the asymplotic
efficiency of another four depends on the
pattern of the missing observations., After
defining the regression model and  the
sstimalors  in section 2, the asymptotic
refationships between WK's estimators and
two-step asymplofically efficient estimators
are indicated in scction 3. In scction 4, some
results from a Monte Carlo experiment are
used to indicate whether these efficiency
differences are important in small samples.
Section 5 containg  some  concluding
COMMEnts.

2. THE MODEL AND ESTIMATORS

The model considered is the static finear
regression model which can be written for the
ith observation as:

vy =X p+u, (1)
where y; is a scalar, X is a Ixk vector of
exogenous explanatory variables, B is a kx|
vector of parameters o be estimated, and
i=i,.,n. The distarbance u; is assumed to
follow a first-order autoregressive process

u, =pu_, +e, —l<p<l (23
where ¢ is assumed to be normally and
independently distributed with zero mean and

. 2 . P .

variance O7. The initial uy is assumed to be
normaltly distributed with zero mean and

variance G EGE [(1=p%).



When there are no missing observations, in
addition to the ML estimator, there are several
two-step estimators available.  The two step
estimators  are  Uypically  based on  the
Cochrape-Oreutt translformation  applied o

{13, which for i=2,...n gives
v pr=X (pBte, (3)
where v (pr=y, —p¥,, and

Xi{py=X, —-pX,,. For the first
ohservation, the appropriate transformation is
¥, = (X B+ du,. (4)

oy
where {[} Z«ﬂl** S

application of OLS to H) for (3) and (41
cowld be used 10 produce a consistent and

was observed, the

asvimpnotically efficient estimate of B 5i0Ce &
is serially uncorrelated and homoscedastic.
Given a consistent estimale of 0, p {3}

and (4} can be rewritten as
(P = XI"({;)B+ €+, (5)
= (( OB+ (Du (&)

where Cn)ﬁ 1“@:. V.o =1 ]1&({3 0},

1
and uw{B=y - X5
OLS w0 (3 [(5) and (6)] is known as the non-
terated version of the Cochrane-Oreutt (1949}
[Prais-Winsten  {(1958]  procedure.  Both
procedures  will  give  consistent and

asyrmplotically efficient estimates of B .

Suppose now that out of the n possible
ghservations only m {(<n) arc actually
ohserved. The simplest estimator of B in this

case is 1o apply OLS 1o alt the available dala

Lo give ﬁ. Denote the rank number of the ith

actual  observation i the original set of

abservations by n; with ny=1 and n,=n, and
w7

define t, =n, —=n,, for 122, the sel

I={i:2<ismandt, =1} which picks
¢ those values of § for which the preceding
values of vy oand X are nol missing,
and 1= {1 2 <1< mand t, > 1) which picks
out those values of 1 for wma,h the preceding
values of v or X are missing. For observations
in I, {3) is the appropriate transformation ©
achieve serially uncorrelated errors, For L= 1
repeated substitution of {2} into wsell gives

I .

‘uﬁi = p u . _anl ! (7}
Nl

where n, = o [ e, and

Var(n, ) = GZ:(:p] = MpY’

Then, defining
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Application o

yopi=y, ~p"y,. )/ Ap)
Xi(py=(X, -p"X, 1/ Ap),
and substituting {1 into (7). gives for ;> 1,
o (P =X (p)h+e, (8)
The error term in (8), €, =T, AP, s
serially  uncorrelated and homoscedastic.
Given a consistent estimate of 3, p 8) can
be rewritien as
Yo (P1 =X (PiP+e, +1, ©)
where 1, =1, ‘(B)(\p"‘ ~p'y.

For a given initial estimate of O, Wansbeek
and Kapteyn  (19853) suggest the following
two step estimators of B

{iv applying OLS to (Y for 1 € l ;

(it} applying OLS to (9) for 122 and

(it applying OLS o (9) for 1 2 2 and (6).

These  estimators all require  an  initial
consistent estimate of P . Wansbeek  and
Kapteyn (1985} suggest  wo o simple
alternative estimators of O

Dy = “?u(im, ;"ZU'[(B)

Ppw = ZL! {!5}’-11 1([%}/LZU ;(B) u, (ﬁ)}

| . .
so that ‘pc(,| < ‘p},wi. The estimator D, i
chlained as the regression coelficient [rom
regressing U (3) on 1, (3) when adjacent

observations are available.

The combination of the three ways of

estimating B and two methods of estimating
{ give rise 10 six combinations which arc
labetled by WK (1975, p. 476) as

Beoco (0 with Do

Boopy 1 (i with peg .

Beons (i) with Py,

B oweo - (0 with Py

Bpwpy () with Py

i

3. ASYMPTOTIC PROPERTIES OF
THE ESTIMATORS

Lo

[

s T L) wWith Oy

It is important o eslablish the asymptotic
propertics of the six two slep estimators
discussed in section 2. This provides a



valuable backdrop o any Monte Carlo
simulation. There arc two ways to establish
the asymptotic propertics of these estimators.
One is o use the results for generaled
regressors in MeKenzie and McAleer {1994
and the other is to rely on Rothenberg-
Leenders (1864) theorem concerning two-step
estimators.

When there are no missing observations, OLS
apphied to (1) will be, in general, inefficient
asymptotically relative to OLS applied to (3)
for (3) and (4)] and the OLS formula standard
errors will be inconsistent estimales of the true
standard errors. When a consistent estimate of
D s used and the cxplanatory variables are
exogenous, the same result holds even though
the error term in {5), €, +V,, Is scriaily
correlatled  and  heteroscedastic  in small
samples  this is  irrelevant  asymplotically
(sec McKenzie and McAleer (1994)), The
addition of an additional observation [(6)] 1o
an  OLS  regression  is  asymplotically
irrelevant.

because X:‘! ({)) is uncorrelated with uk__](B'}

A similar argument applies in the missing
ohservations casc, An estimator based on (i)
which uses an initial consistenl estimate of D
will be asymptotically efficient  beeause
although the error term in (93, g, +M, is
scrially correlated and heteroscedastic in small
samples this is irrelevant  asymplotically
foen . y
because X, (P) is  uncorrelated  with
u“;_l(B) {(using McKenzie and MceAleer
(1994, Theorem 1)). Since options (1) and (iD)
both involve OLS regressions we know that
throwing observations away will not matter if
the number of ohservations thrown away, j=n-
m, is small relative to m, more specifically, i
j/m—0 as m->ee. However, if
J/m—=q#0 as m— oo, throwing away
observations matiers so that option (i) will be
asymptotically efficient refative to option (i).
The difference hetween option {i} and {iii),
one observation [(63], is asymplotically
irrelevant.  This  discussion  indicates  Lhat
Bcopw and BI‘WPW arc  atways
asymptoticaily efficient, and the asymptotic
efficiency ol BCG{I() Beowa » B pweo and
Bowua depends on how  the  number  of
missing observations changes as the total
nurmber of observalions increases,

Letiing @'ﬁ(ﬁ’,p,ﬁi}, L8y be (I/m)

times the log-likelihood lunction, al /g8 e
the first derivative of L and

1(8) = .E{—-al L/ a@’a@} he the

information matrix,  then Rothenberg-
Leenders (1964) showed that using an initial

consistent estimate of §, say §, consistent
and eificient estimates of §, say ©, can be
constructed as:

6 =0+1(6)"0L(0)/ 0. (10)

Wansbeek and Kapteyn (19835 have already
derived the necessary results 1o cnable this
resull 1o be employved. They show that the
information matrix is block diagonal between
[fand [p.o” ) so that to caleulate a two-step
agympiotically efficient estimate of E}» We

only need  to determine ol / aB and

L, (0)=E(-3°L/3pop’).

Define the matrices A, B, C, D, E, and F as
follows

/.\:XIIX](;)'-” (11

B=2 X (pX, (). (12)
=3

C=2 Xp (e, (p). (13
ied

D=X, y0°, (14)

E=2 Xl (py.(p). (15)
el

F=3 X (py; (). (16)
il

Then

1,5]5(9)E[A+B+C]/mdf , (7

and

JL/ B =

L (18)

[D+E+F]-]A+B+CP}/ mo)

Substituting (17) and (18) into (10} implies
that a simple two-step asymptotically ellicient
estimator for B is:
B=[A+B+C]'[D+E+F] (19)
where 7~ indicates that the gquantity i3
evaluated using a consistent estimatc ol .

WK's estimators can be viewed as arising
from dilferences in {a) the initial consistent
estimates of ; and (b) the estimates of the
information matrix {and first derivalives of the
log-tikelihood) employed. Provided the inilial



estimate of O ts consistent, the choice of p

has no effect on the asymptotic efficiency of

the two-step estimator of 3. Both Pon and
Ppy are consisteat estimates of 0 so an
estimate of hased B(m {19y using cither [
07 [Ty will be consistent and asympiotically

elficient.

The Rothenberg and Leenders theorem also
holds whenever any asymptotically cquivalent
estimate  of  HB), G such  that
plim(G) = 18 or the derivative vector © .
— o . =142
such that T—dl(8)/ a0 i o, (m Y and
“-” indicates evaluation al a /10 consisicnt
estimate 15 used in (1) (Pagan (1986,
Theorem 7)),

Beopw and By use
: ) R ) ]
{A%— B+ Cj/ MG, as the estimate of the
information matrix and
ID+E+Fi-[A+B+CB)/ mo;

as the estimate of the first derivatives of the
likelthood. Tt follows that [,y and ﬁpm,\\,
are consistent and  asymplotically  efficient
estimates of ﬁ BCUM‘,\_ and ﬁg,“,-MA Use

] \ ‘ i
[A+B]/mo! as the estimale of the
information malrix and
({D+E]-[A+BB}/ mo, as the estimate of
the first derivatives. ?Bc:(“)co and [3 pyee USE
E 2 . . s .

B/ mMF, as the cstimate of the information
malrix and {E -8B/ mr:;i as the estimate of
the [irst  derivatives, The ]?}C(m,m and

B pwnia Sstimators, and BC(‘)C(:M‘J ﬁ WO
estimators differ only in their treatment of the
{irst obscrvation but both cxclude the first
observation  following o gap ol missing
observations. Obviously, neglecting the first
observation, that Is, neglecting A in (17), and
AR and D in (18) is irrelevant asympitotically
but, in small samples. the first ohservation is
not irrelevant (see WK's resulis and section
4.

With  the usual assumptions aboul  the
plim[A+B+C)/m s«
positive  definite and  finite  matrix.  The
asympiotic effect of neglecting  the  first
observation following a group of  missing
observations, that is, C in (17) and (E*‘—C@) in

FCEIESIOTS,

(18) depends on the ratio of the number of
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neglected  observations (0 the number of
observations. Il J/m —~» Jas m — oo, then
asymptotically the neglected observations are
unimporant. Hence, any algorithm
disregarding these ohservations will be as
asymptotically efficient as a similar algorithm
that takes account of them. Of course, in smali
samples, disregarding  those  observations
couid be important. If  j/m->q#0
asm —» oo then the neglected observations
remain important in large samples. Hence, an
asymptotically efficient estimator must take
them into consideration, Hence, estimators
p coros Beos » Bpwco and Bm’aq.f\ will be

asymptotically — efficient 1f  j/1m - 0 as
M = 2o but will be asymptotically inefficient
relative 1o the maximum likelihood estimator
ifj/m—q#0as m— oo,

4. MONTE CARLO SIMULATION

We  have  pedformed  some  simulation
experiments which analyse an important class
of missing observations - the casc of reguiarly
unabserved  data. These  experiments  arce
designed not only to illustrate our theoretical
resulis but also to complement the simulations
presented by WKL, WK's experiments suggest
that there is little to be gained in terms of root
mean square error (RMSE) in going from an
estimator based on oplion (i) to one based on
option (i), that is. they suggest most of the
efficicncy gains compared to option (1) comes
from appropriate  tcatment of the first
observation rather than from  appropriate
treatment of observations [oflowing a gap due
to missing observations,

The assumed data generating process is
—_— a »n s =Y
Y. = BE +ﬁz>‘c L U dp =1 +Lz
wilh X, being generated as cither a trending
series:
X

W

if

exp(0.040)+w,,
~ NID{0.0.0036)

or @ non-trending series:

X,, ~ NID(0.0.0625).

Each experiment involves 200 replications.
Estimation is carried oul over lwo sample
sizes, 29 and 64, and for three values of 0.

1

i

.8, 0.6 and -0.8. The simulation experiments
are variations on those carried out by Beach
and MacKinnon (1978) and WK, The unusual
choice of sample size is 10 ensure that in all
experiments the finad observation in the series
is not missing. We have emploved the
cstimalors discussed in section 3 as well as the



OLS estimator. To generate samples of
observations that contain regularly unobserved
data we have assumed that two consecutive
data peints out of every seven arg  nol
observed thus mimicking daily data. Given the
growing importance  of  daily  daa in
econometric investigations, the effect of this
pattern of missing observations on parameter
estimation are of particular importance in
applied work.

The selection of a particular day with which
the data commences affects the position of the
pnobserved data pomnts and may affect the
finite sample properties of the estimators. Our
Monte Carlo experiments cover five cases
corresponding o the  observation  period
starting on Monday to Friday of the week as
well as the case of no missing dala, denoted
“Complete”, Patterns  Hsted in the lables
correspond (o0 the first day of the day of the
data, for example, “Monday” denotes & patlern
of having five observations, two missing
observations, another five observations, cto,
“Tuesday” denotes a pattern of having initially
four observations, lwo missing data points,
another five data points, cle., with obvious
definitions for Wednesday, Thursday and
Friday. When the estimate of & did not lic
netween (-1,1) it was set equal lo either -
0.99999 or 0.99999. For n=29 and |p=0.8],

up o 8% and 0% of the estimaies based on

Doy and Ppy were greater than unily in

absolute value.

Tables 1 and 2 contain the RMSEs of 3, for
0 =0.8 and 0.6 for aon-trending and trending
data, respectively, for all seven eslimafors.
They show that the problem of inlormation
iost by algorithms neglecting an observation
after a gap of missing values (thal is, COMA,
PWMA, COCO, PWCO) is importlant in even
smali sample sizes especially when the data 18
trending. The good performance of the OLS
estimator when the data is trending relative o
those estimators  that  neglect  the  first
observation  after  a  gap of  missing
observations is noteworthy.

5. CONCLUSION

In this paper, we have derived the asymptotic
relationships belween a number of Two step
estimators. An important finding s that the
asympiotic  efficiency  of  some  of  their

cstimators depends crucially on the patlern of

missing ohservations and their relationship to
the usable observations,
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Table 1: RMEEs of Estimators of ]53 {(x1808} - Non-Trending Data

Pattern
Complete
Monday
Tuesday
Wednesday
Thursday
Friday

Complete
Monday
Tuecsday
Wednesday
Thursday
Friday

Complete
Monday
Tuesday
Wednesday
Thursday
Friday

Complete
Monday
Tuesday
Wednesday
Thursday
Friday

Table 2:

Patiern
Complete
Monday
Tuesday
Wednesday
Thursday
Friday

Complete
Monday
Tuesday
Wodnesday
Thursday
Friday

Complete
hMonday
Tuesday
Wednesday
Thursday
Priday

Complete
Monday
Tuesday
Wednesday
Thursday
Friday

DL COCO
65 39
79 32
79 60
7740
03 36
&7 53
52 4
057
76 68
41 62
T
66 ol
46 2.7
5.6 35
53 35
6.1 34
53 35
57038
4.8 3.0
53 38
52 2.9
48 249
52 2.6
340 35

OLs COCO
66 72
67 103
66 Uo
65 82
65 B3
66 96
40 42
39 57
38 60
38 57
38 51
38 5
97 97
g8 101.3
48 114
97 117
EAV
9.6 1101
53 6.0
4.9 5.4
35 47
38 69
6.0 7.7
5.8 8.2

COPW
44
46
53
45
50

52
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